
-
--

INCLUDING:

FEATURING:

REQUIRES:

HDS
HYBRID DEVELOPMENT SYSTEM

FOR

NORTH STAR
SYSTEMS

INTERACTIVE ASSEMBLER/EDITOR
EXTENSIONS TO NORTH STAR BASIC

CO-RESIDENT ASSEMBLER/EDITOR
FULL Z-80 CAPABILITY
OPERATIONAL ON Z-80 OR 8080 MACHINES
INTEL MNEMONICS
AUTOMATIC FILE HANDLING
FLEXIBLE INTERFACE TO ASSEMBLY ROUTINES
PARAMETERS PASSED BY ADDRESS OR VALUE

RAM AT LOW MEMORY
MINIMUM 24K SYSTEM

READY TO RUN ON DISKETTE

COMPLETE DOCUME NTATION

FULL USER SUPPORT

$40

Copyright 1979

Allen Ashley
395 Sierra Madre Villa

Pasadena. CA 91107

(213) 793-5748

- HYBRID DEVELOPMENT SYSTEM

The HDS development system enhances communication between North Star BASIC and
assembly language routines. Now critical portions of your BASIC programs may be
executed in assembly language while retaining ease of program development. A BASIC
program in which portions are performed by assembly language routines is referred to
as a hybrid program. Such hybrid programs may be attractive for several reasons:

1. In speed-critical applications, a hybrid program may be
very much faster than BASIC.

2. Proprietary program segments can be coded in assembly
language for protection.

3. Hybrid programs ease the transition from BASIC to
assembly language programming.

4. Certain operations are more easily performed in assembly
language than BASIC.

HDS includes modifications to North Star BASIC to enable hybrid program development
as well as a co-resident assembler/editor -- ASMB -- which includes all the features
necessary for the creation, modification and disk storage of assembly language source
files for 2-80 or 8080 computers. ASMB is a very fast assembler which, together with
the co-resident editor, is structured for a very rapid assemble/execute/modify cycle.
The instruction set of ASMB is designed to be a logical and syntactical extension of the
widely familiar INTEL instruction set for the 8080. Users already familiar with 8080
assembly language will readily acquire the extended instruction set of the 2-80 processor.

Modifications are provided for North Star BASIC to enable variables to be accessed by
address as well as value. The BASIC CALL operation has been modified to allow an
unlimited number of parameters to be passed to the assembly language routine. Program
variables and strings may be passed to an assembly language routine, modified, and
passed back to BASIC.

HDS is an exceptionally powerful development system combining the execution speed
advantage of assembly language while retaining the ease of BASIC program development.

It has been established that the major portion of execution time is accounted for by a
rather small portion of typical computer programs. It follows that significant reduction
in execution time can be achieved by coding critical program segments in assembly
language. A program which illustrates the hybrid potential is diagrammed below.

I READ DATA I ~ I SORT f--~>~ WRITE RESULT
FROM DISK. _...:D~A.T;J;;A~__ TO DISK

1

The execution times of the first and last of these blocks, disk read/write. are not
significantly influenced by programming. The central block may be performed by a
simple exchange sort which might be coded in BASIC as

100 REM N IS THE NUMBER OF POINTS
110 FOR J = 1 TO N-l
120 FOR K =J+l TO N
130 IF A(K) =:::oA(J) THEN 150
140 .Al = A(K): A(K) = A(J): A(J) = Al
150 NEXT K
160 NEXT J

The outer loop of this program (110-160) is performed some N times, for which the inner
loop (120-150) requires an average of N/2 repetitions. Line 130 is executed some N*N/2
times. For any reasonable value of N this program will consume most of its time
executing lines 130 and 140. If the inner loop of this program were coded in assembly
language the overall execution time would be dramatically reduced. Such a hybrid
program using the simple exchange sort algorithm could compete favorably with a more
elegant sort coded entirely in BASIC. Typical program segments run 50 times faster
in assembly language than BASIC. Owing to the unavoidable speed dilution resulting from
disk operations, the overall speed impr"ovement factor would be expected to be on the
order of 20.

Such hybrid programs lie outside the original intent of BASIC, and existing interpreters
do not provide adequate facilities for communication between BA.8IC and assembly language.

2

-

1. BRINGING UP HDS

1. Write protect the HDS diskette before attempting to use it.

2. Make a working copy of the HDS diskette using the RD and WR commands of
the DOS.

3. Store the original diskette as a master backup copy.

4. Read the entire documentation.,

3

2. INTERFACING HDS TO NORTH STAR DOS

The components of HDS utilize the standard entry points to the North Star Disk Operating
System:

-
DOS + f<l'DH
DOS + If<l'H
DOS + 16H
DOS + 28H

Character out
Character in
Control/C
Warm start entry

File names communicated to HDS are terminated by a carriage return. The file name
may be suffixed by an optional unit number. The unit number. if present, must be
separated from the file name by a comma. File names not suffixed by a unit number
default to drive L

Components of HDS which generate disk output request an output file name. The output
file must be found in the directory. HDS will examine the size of the output file. A zero
length output file is treated as a new file and HDS will update the directory entry to reflect
the completed disk operations.

If a required file is not found in the directory, HDS issues a "?" prompt and awaits
re-entry of the file name. HDS will automatically size the output file if the user creates
(under the DOS) an output file of length f<l' before entering the program. As an example:

CR OFILE f<l'
GO ASMB4f<l'

Respond to the FILE query With OFILE. HDS will update the directory entry.

It is generally not possible for HDS to predict the required output file size before disk
operations commence. If the user elects to direct disk output to an existing file. he must
ensure that the file size is sufficient to contain the output. HDS will cease dis k operations
with a "NO ROOM" message when the existing output file is full.

4

3. MODIFYING BASIC

Release 5.0Release 4.0

Perform the following steps to modify your copy of BASIC. Carriage return is indicated
by 'J .

l.

2.

LF BASIC 2MIif 2
GO ASMB41if :2

load BASIC for modification 2DIiflif

ASMB41if.5

3. After sign-on, type

F /PATCH/61if1if1if J create memory file

After response, type

R 2
Respond to the FILE query with

PATCH4.1if 2 PATCH5.1if

After memory allocation response, type

A Iif 2
At completion of the assembly, type

4.

B .l
SF BASIC 2AIiflif ;

return to DOS

save BASIC 2DIiflif

5

4. BASIC MODIFICATIONS

Modified BASIC interprets a variable enclosed in square brackets as a reference to the
address or location of the variable rather than to the current value of the variable. The
address of floating point variables refers to the sign/exponent byte in standard North
Star floating point form. The address of string variables refers to the first character
in the string storage area. Addresses passed to assembly language routines allow these
routines to operate on any BASIC variable.

The modified BASIC CALL to an assembly language routine imposes no limit to the
number of such parameters. If there are exactly two parameters in the CALL, the first
parameter is the destination address while the second parameter is passed in the DE
registers to the assembly routine. When more than two parameters are present, the
last parameter is passed in DE, while all preceding parameters are passed on the stack.
Upon RETurn from the assembly routine the value present in HL is assigned to the
value of the CALL. Generally a dummy assignment statement is used to invoke the
CALL.

When parameters are passed on the stack it is the responsibility of the assembly language
routine to POP the correct number of items off the stack to ensure proper RETurn to
BASIC.

6

,

5. FLOATING POINT STORAGE MODE

North Star BASIC stores all numeric values in BCD floating point mode. Standard BASIC
(8-digit) allocates 4 bytes for the mantissa and one byte for the characteristic and sign.
The 8 digits of the mantissa are packed two BCD digits per byte in four consecutive
memory bytes. The exponent byte follows the four bytes of the mantissa. The sign is
the most significant bit of the exponent byte (~ implies positive). The characteristic is
stored excess 64, which means that the value 64 is added to the characteristic. A few
examples should clarify:

12345678 = .12345678 * 1~8

The mantissa is stored as

12 34 56 78

in four consecutive hex bytes. The characteristic is stored as

64 + 8 = 48 hex

The complete representation in memory is

12 34 56 78 48

The number -12345678 is stored as above, except that the sign bit is 1.

12 34 56 78 C8 (C8 = 48H + 8~H)

The number . ~~1 is written as

. ~~1 = .1 * 1~-2

1~ ~~ ~~ ~~ 3E

Pointers to floating point numbers point to the sign/exponent byte.

6. STRING STORAGE MODE

Pointers to string variables point to the first character of the text area. The two bytes
preceding the text represent the number of defined characters in the text. The two bytes
preceding that contain the total dimension of the string variable.

7

7. ELEMENTARY OPERATIONS

The elementary arithmetic operations are performed by pointing register pair BC to the
leading (first) operand, DE to the secondary operand, and CALLing the appropriate
routine. The operation overwrites the leading operand. Thus to perform 12/3, point
BC to 12, DE to 3, and CALL the DIVIDE entry. The representation of 12 is overwritten
by the answer 4.

8. FUNCTIONAL OPERATIONS

Functions in BASIC are invoked by pointing the DE register pair to the argument and
CALLing the appropriate functional routine. The argument is overwritten by the result.

9. ROADMAP OF BASIC OPERATIONS

-

RELEASE 4.0 RELEASE 5.0
OPERATION ENTRY POINT ENTRY POINT

+ 4B32 4ED8

4BIB 4EC1

* 4A1f1 4DB6

/ 4C4f1 ·4FE6

t 3FB6 4349

SQRT 3F46 42D9

INT 3E51 41E1

SGN 3DFF 418F

SIN 59F4 5EfIfi

COS 59EA 5DF6

ATN 5AE5 5EF1

ABS 3DFA 418A

LOG 58FF 5DflB

EXP 57B2 5BBE)
COMPARE 3D8D 41lD

8

10. HYBRID UTILITY ROUTINES

The following routines serve as examples of hybrid program development, and perform
certain useful functions. In the following,

addr represents the address at which the assembly routine is located.
xxyy represents an arbitrary address.

OVERLAY LOADER FOR ASSEMBLY ROUTINES

The overlay loader allows BASIC programs to load an assembly routine into memory,
prior to invo king that routine within the BASIC program. This routine is of such general
use that it may prove desirable to incorporate it as part of BASIC. (ItJ bos ~ /J(Z{; 4

w'TH :rUdlP @
In BASIC the loader is invoked by the sequence ;;;. "I 0 I = 10 '1-"17)

H blEc..

P$ = "OBJF.IL~ [] ;P$ is the file to be loaded
Z9 = CALL (add].xxyy, P$)

'._'. - ~. /o'lq7/o
The Z9 is a dummy assignment. addr is the location of the loader, xxyy is the location
at which the routine P$ is to be loaded. The loader itself is:

DOS:EQU 2~~~H

ORG ADDR
MVI A,l
XCHG
CALL DOS+1CH
JC DOS+28H

ORI 8~H

MOV C,A
MVI B,l
MOV E,M
INX H
MOV D,M
INX H
MOV A,M
POP H
XCHG
JMP DOS+22H

;DRIVE NUMBER
;HL POINTS TO FILE NAME
;DLOOK
;FILE ERROR

;FOR DOUBLE DENSITY ONLY
;DRIVE NUMBER
;READ COMMAND

;DE HAS DISK ADDRESS

;FILE SIZE
;LOAD ADDRESS

;DISK READ

The overlay loader is provided as file OVLOADR (single density).

9

REPLACING FOR/NEXT LOOPS

Simple FOR/NEXT loops are easily replaced by assembly routines. often with a dramatic
improvement in speed. Consider the following BASIC segment to sum the N elements of
an array A.

S=O
FOR J=l TO N
S=S+A(J)
NEXTJ

Replace this segment with

Z9=CALL(addr. [A(l)]. [sJ. N)

The summation is performed by the assembly routine:

-

ORG ADDR
XCHG

SHLD COUNT
POP B
XRA A
STAX B
POP D

SUMLP:LHLD COUNT
MOV A.H
ORA L
DCX H
SHLD COUNT
RZ
PUSH B
PUSH D
CALL FPADD
POP D
POP B
LXI H.5
DAD D
XCHG
JMP SUMLP

COUNT:DW ¢

;N
;POINTS TO S

;s4
;POINTS TO ARRAY

;RETURN IF DONE

;SAVE POINTERS
;FLOATING POINT ADD IN BASIC

;RECOVER POINTERS
;BYTES PER FLOATING POINT
;ADVANC E TO NEXT

10

NUMERICAL COMPARISON

The numerical comparison routine sets the flags according to a numerical comparison n
between the elements pointed to by the BC and DE register pairs. The flags are affected
as follows:

No flags if @B:=>@D
Z if @B= @D
C if @B<:@D

in which @B. @D refer to the floating point numbers addressed by BC and DE respectively.
The flag status reflects the operation @BC-@DE.

The following routine uses the COMPARE routine to find the minimum of an array and
return its value in B:

ORG ADDR
XCHG

SHLD COUNT
POP D
MOV B,D
MOV C,E

~
MINLP:LHLD COUNT

MOV A.H
ORA L
DCX H
SHLD COUNT
JZ COPY
PUSH B
PUSH D
CALL COMPARE
POP D
POP B
JC BIGR
MOV B,D
MOV C,E

BIGR:LXI H,5
DAD D
XCHG
JMP MINLP

COPY: POP H
MVI E,5

COPLP:LDAX B

, -,- .-",)

;NUMBER OF POINTS
;POINTER TO ARRAY

;SAVE MIN WHEN DONE

;SAVE POINTERS

;FOUND SMALLER
;FLOATING POINT LENGTH

;BYTES TO MOVE

11

MOV
DCX
DCX
DCR
JNZ
RET

COUNT:DW

M,A
B
H
E
COPLP

;POINTERS BACKWARD
-

This routine in invoked from BASIC as

Z9 = CALL (ADDR, [B] , [A(l)], N)

12

AS MB

A disk-based assembler/editor
for the development of small to medium size

assembly language programs

Copyright 1978

Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107
(213) 793-5748

2-1

•

INTRODUCTION

ASMB is a powerful disk-based editor/assembler system for program devel
opment on a Z80 microcomputer. Structurally and operationally similar to
the program development packages SP-I and ESP-I, ASMB offers more exten
sive editing and assembling features while extending the instruction
assembly to the entire Z80 instruction set.

ASMB includes all the features necessary for the creation, modification
and storage of assembly language programs. Departing from the cumbersome
ZILOG assembly language, ASMB features instructions mnemonics similar to
the more widely familiar INTEL set. Indeed. mnemonics for the 8080 subset
of the Z80 instruction set are identical to the standard INTEL format.
Users familiar with INTEL assembly language will appreciate the treatment
of the Z80 instruction superset as a logical and syntactical extension of
the INTEL instructions.

ASMB is itself written entirely in the 8080 instruction subset. and is
therefore operational on either 8080 or Z-80 machines. ASMB can thus serve
as a two-way cross assembler. assembling 8080 source programs on a Z-80
machine. or Z-80 object programs on an 8080 machine. The versatility and
power of ASMB make it an ideal program development system for either those
presently owning a Z-80 machine or those anticipating a future expansion of
their present 8080 machine to the more powerful Z-80 processor.

2-2

I ~

ASMB ORGANIZATION

The ASMB program development system consists of a combination text
editor, assembler, and system executive for the creation and modification of
zao assembly language programs.

The system executive is responsible for handling all input/output operations,
invoking the editor or assembler, and dealing with the disposition of source
and object files in central memory.

The text editor is responsible for the creation and modification of source
programs within the memory file area. The text editor is line-oriented in
that editing consists of entering or deleting source lines identified by
ascending line numbers. The editor features automatic line numbering, line
renumbering, moderately free-form source input, well-formatted source output,
and a unique mini-editor for the modification of source code lines.

The assembler performs a two-pass translation of source to object code. The
assembler includes the powerful feature of conditional assembly. Instruction
mnemonics are logically and syntactically identical to the INTEL assembly
language. The assembler is file-oriented with up to six source files simul
taneously residing in memory. Optional symbol communication between files
enables a moderate block structure development.

The concept and structure of ASMB were strongly influenced by Software
Package #1. Assembly language source programs are maintained in source
files under control of the system executive. Source files are created and
deleted by commands to the system executive. Source code is entered into the
source files under control of the editor, and the assembler can be directed
to translate the source file to object code anywhere in memory.

Available space for the ASMB symbol table limits the size to approximately
200 labels for any single assembly.

~ <f;!DDIJ ':::";"/)/',' (.,.~-

@ fJ¢ EC c:.I-IA N (.,.6:-

0?2 15£3 c. fill tV r: ""

P/-,eKS;:>;-, F_ (_c,,'-'-,~,;,--
-,- ------"'"-

\vs<,,_ BS:rP'8H)

';F 70 I g
S-F 7"0 rb g'

s-;:: 70 ~ If

{J

<-/-lANG/C. pp 70 456

i.' I! 1/ /I} .; i!::.- Dei 70 ;::~

2-3

EXECUTIVE COMMANDS

COMMAND FORMAT
Executive commands consist of a single letter identifier, together with an
optional modifier character, and one or two hexadecimal parameters. The
command ~haracter(s) must be separated from any numerical parameters by a
single blank. Numerical parameters are likewise separated by a blank.
In the following, hexadecimal parameters are indicated oy the sequence nnnn
or mmmm while an optional character ITlodifier is indicated by a lower-case c.
Unless otherwise noted, the modifier c is a device control character (0-7) which
will be present in the accumulator for all subsequent console I/O.
All command lines· are terminated by a carriage return.

COMMAND LIST

I~ Fc /NAME/

F /NAME/nnnn

F /OTHER/

F /ERASE/0

F

FS

W

R

C n

File control command. The file control command enables
the user to create or destroy source files. Each source
file is identified by a file NAME of up tQ five charac
ters. The file name must be delimited by slashes. The
opening slash must be separated by a blank from the
command characters. The hexadecimal parameter nnnn and
the modifier character are optional.

Opens a source file NAME, starting at location nnnn,
making NAME the active file. Any previously active files
are maintained.

Recall previously active file, OTHER, making it the currently
active file. Note the hexadecimal parameter is absent.

Delete file named ERASE, freeing memory space for a new
source file.

Display the currently active file parameters, file name,
starting and ending memory locations.

Display the file parameters of all memory files.

Write the currently active source file to disk. The
executive will respond with the query FILE. The user
must then type the disk file to receive the source.

Read source code from disk into the currently active
memory file. The executive responds with the FILE query.

Append a disk file to the currently active memory file,
renumbering all source code lines by the increment n.
Improperly formed disk operations, disk read errors, or
insufficient disk file capacity result in the DISK ERROR
diagnostic.

2-4

-
D nnnn mmmm Delete lines numbered

from the source file.
is deleted.

nnnn up to and including mmmm
If mmmm is omitted only nnnn

B

I

Pc nnnn
Pc. /s-n,.NG/

Lc nnnn
LC /STR.r-JG-/

G nnnn

u

A nnnn rnmrrm

AS

..-
(BYE) Return to disk operating system.

Initialize the system. clearing all source files. The
initialization is automatically performed upon initial
entry. No lines of source code can be entered until a
new source file has been defined.

Print a formatted listing of the current source file.
starting at line number nnnn.

Print an unformatted listing. suppressing line numbers.
of the current source file.
The optional modifying character. c. can be an ASCII
digit in the range 0 - 7. The numerical value of this
modifier will be present in the accumulator for all sub
sequent I/O. or until redefined by the user. The
value is initialized to zero.

Execute at location nnnn. A user program may return to
the system executive by a simple return statement.

Execate at locatian Delara .I:I:lis eeRll!ilad is "esel"'ed fer
antI) to tl:e flEBlJ8 salltl 91 I) dpm.

:rUM'-- ,0 F8,JG, (INJ-S"T:: 'Srnp/'i?o.o)

Assemble the current source file using implied orlgln
(ORG) nnnn and place resulting object code into memory
starting at location mmmm. The second parameter is
optional; if absent. the object code is placed into
memory at nnnn.

Mark existing symbol table for future global reference.
(Save symbol table resulting from last assembly.) This

command must follow an assembly: a symbol table must have
been generated.

AE nnnn r1Tlmln

AK

Assemble. as above. displaying only source code lines
containing an assembler diagnostic.

Release (kill) the global symbol table.

2-5

E nnnn

E /STRNG/

N nnnn

Enter the mini-editor to edit the currently active
Source file beginning at line nnnn.
The mini-editor enables the user to scroll through the
source file, changing source lines on the fly.
Upon entry, the mini-editor displays source line nnnn or
the first source line if nnnn is omitted. The mini-editor
then awaits keyboard input. Depressing any key except
ESCAPE (ISH) advances the file pointer to display the
next successive line. The escape key allows the user to
re-enter the source line starting at character position
two. (At the label field, no line number is required.)
The user-entered line, terminated by carriage return, then
overlays the old line. The mini-editor cannot insert new
source lines into the file. Return to system executive
via Control C.

Enter the mini-editor to edit the currently active source
file beginning at the first occurrence of character string
STRNG. The string may be at most five characters long and
may contain no blanks. The string search is operable for
the P and L commands as well.

Renumber source lines, starting at nnnn and incrementing
by nnnn.

2-6

EDITOR

Source lines are entered into the currently active source file under control of
the file editor. The system executive recognizes a source line by a four
digit decimal line number, which must precede every line in the source file.
Modifications to the source file consist of one or more whole lines. Lines
may be deleted by the D control command. Lines may be modified by retyping
the line number and entering the new source line. The editor adjusts the
source file to accommodate line length without any wasted file space.

Source program lines consist of a four-digit line number followed by a
terminating blank. The first character of the source line may contain
identifiers '*' or ';'. These identifiers proclaim the entire line to be a
comment. The label field of the source line must be separated by exactly
one blank from the line number. Identifying labels can be from one to five
characters long and may contain no special characters. The operation field
must be separated from the label field by one or more blanks. The operand
field, if present, must be separated from the operation by a single blank.
Two blanks following the last operand separate the comment field, which should
start with a semicolon. Source lines may be up to 72 characters in length.

The user can invoke automatic line numbering for lines entered into the source
file. In the automatic mode, line numbers are incremented by one from the
starting value. Automatic line numbering is initiated by entering the starting
line number followed by > (greater than). Subsequent entries begin in character
position two. The automatic mode is exited by typing < (less than) following
the carriage return for the last source line. Failure to properly exit the ~
automatic mode can result in erroneous source lines. Lengthy insertions can ~~I
be made into an existing source file by renumbering the file before entering
the automatic mode.

The mini-editor allows text lines in the source file to be modified. When under
control of the mini-editor, typing the Escape key switches from the scroll mode to
the modify mode. Editing of the source line begins at the first character of the
label field. Characters typed in under the modify mode are used to build the new
source line. The old source line can be used as a model for generating the new
source line: characters can be retrieved from the old line and placed in the new
line. In the modify mode, the following control characters are recognized:

CONTROL-A Fetch the next character from the old line and place it in the
new line.

CONTROL-Z Delete the next character from the old line.
CONTROL-Q Back up one character in both the old and new lines.
CONTROL-G Transfer the remainder of the old line to the new line.
CONTROL-S Reads a character from the console, and transfers all characters

from the old line up to, but not including, the input character.
CONTROL-Y An insert toggle. Between successive toggles, input characters are

inserted into the new line.
Any other characters typed in under the modify mode are entered into the new
line, overriding the corresponding character from the old line.

2-7

ASSEMBLER OPERATION

The assembler operates upon the currently active source file only. The source
file consists of a sequence of source lines composed of the four fields: label,
operation, operand, and comment.

The label field, if present, must start in the second character position after
the line number. Entries present in the label field are maintained in a symbol
table. These entries are assigned a value equal to the program counter at the
time of assembly, except that for the SET and EQU pseudo operations the variable
defined by the label field is assigned the value of the operand field. The
variables defined by the label field can be used in the operand field of other
instructions either as data constants or locations.

The operation field, separated from the label field by one or more blanks or a
colon, cannot appear before the third character following the line number.
Entries in the operation field must consist of either a valid Z80 instruction
or one of the several pseudo-operations.

The operand field, separated by a blank from the operation field, consists of
an arithmetic expression containing one or more program variables. constants,
or the special character $ connected by the operators + or -. Evaluation
of the operand field is limited to a left to right scan of the expression, using
16 bit integer arithmetic. Operations requiring multiple operands (e.g., MOV A,8
or 8IT 3,IX,4) expect the operands to be separated by a comma.

The special operand $ refers to the program counter at the start of the
instruction being assembled.* The program variable $ can be used as any otner
program variable except that its value changes constantly throughout assembly.
The location counter $ allows the user to employ program relative computations.

Assembler constants may be either decimal or hexadecimal character strings.
Valid hexadecimal constants must begin with a decimal digit, possibly 0, and
be terminated by the suffix H.

* NOTE: Some assemblers interpret $ as the start of the next instruction.

2-8

-

-

-
I

REGISTER MNEMONICS

All of the Z-8D registers are listed below. The predefined register set is
defined as:

Register Definition

A Accumulator
B 8 or 16 bit
C 8 bit
D 8 or 16 bit
E 8 bit
H 8 or 16 bit
L 8 bit
M Memory Indirect (HL)

SP Stack Pointer
PSW Program Status Word

IX 16 bit Index
IY 16 bit Index
RF Refresh Register
IV Interrupt Vector

2-9

INSTRUCTION SET ARRANGED BY GROUP

The complete Z-80 instruction set is listed below. In the instruction mnemonics
which follow:

pp qq refers to an arbitrary 16 bit datum;
yy refers to an arbitrary 8 bit datum;
d refers to a Z80 displacement except for relative jumps;
R refers to an 8 bit register (A, B, C, 0, E, H, L, M)
RP refers to a 16 bit register pair (8, 0, H, SP)
QP refers to a 16 bit register pair (PSW, B, D, H)

-

MNEMONIC ZILOG REMARKS

8 BIT LOAD

MOV R,R LD R,R Register to register (to, from) (RI'M) -
MOV R,IX,d LD R,(IX+d) Register indirect
MOV R,IY,d LD R,(IY+d) "
MOV IX ,d, R LD (IX+d),R Memory indirect (RI'M)
MOV IY,d,R LD (IY+d),R
MOV A, IV LD A, I Fetch interrupt vector
MOV A,RF LD A,R Fetch refresh register
MOV IV,A LD I,A Load interrupt vector
MOV RF ,A LD R,A Load refresh register

ACCUMULATOR LOAD/STORE

LDA pp qq LD A,(nn) Accumulator direct
LDAX B LD A, (BC) Accumulator extended
LDAX 0 LD A,(DE)

STA P..P. 99 LD (nn),A Accumulator direct
STAX B LD (BC) ,A Accumulator extended
STAX D LD (DE) ,A

8 BIT LOAD IMMEDIATE

MVI R,yy LD R,n Register immediate -
MVI IX,d,yy LD (IX+d),n Memory indirect immediate
MVI IY,d,yy LD (IY+d),n

2-10
I

MNEMONIC ZILOG REMARKS-
16 BIT LOAD/STORE RP = B, D, H, SP OP = PSW, B, D, H

LXI RP,pp qq LD RP,nn Extended immediate
LXI IX,pp qq LD IX,nn
LXI IY,pp qq LD IY,nn

LHLD pp qq LD HL, (nn) Extended indirect load
LBCD pp qq LD BC, (nn)
LDED pp qq LD DE,(nn)
LIXD pp qq LD IX, (nn)
LIYD pp qq LD IV, (nn)
LSPD pp qq LD SP, (nn)

SHLD pp qq LD (nn) ,HL Extended indirect store
SBCD pp qq LD (nn),BC
SDED pp qq LD (nn), DE
SIXD pp qq LD (nn),IX
SIYD pp qq LD (nn),IY
SSPD pp qq LD (nn) ,SP

SPHL LD SP,HL Set stack pointer
SPIX LD SP,IX
SPIV LD SP,IY

PUSH OP PUSH OP To stack
PUSH IX PUSH IX
PUSH IY PUSH IY

POP OP POP OP From stack
POP IX POP IX
POP IY POP IY

EXCHANGE, BLOCK TRANSFER, AND SEARCH

XCHG EX DE ,HL Exchange
EX EX AF ,AF'
EXX EXX
XTHL EX (SP) ,HL
XTIX EX (SP),IX
XTIY EX (SP) ,IY

LDI LDI Transfer
LDIR LDIR
LDD LDD
LDDR LDDR

CPD CPD Search
CPDR CPDR
CPII CPI
CPIR CPIR

2-11

2-12

- MNEMONIC ZILOG REMARKS

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL

DAA DAA Decimal adjust accumulator

CMA CPL Complement accumulator logical

NEG NEG Negate accumulator

CMC CCF Complement carry flag

STC SCF Set carry flag

NOP NOP No operation

HLT HALT HALT CPU

01 01 Disable interrupts

EI EI Enable interrupts

1M I' 1M 0 Set interrupt mode
1M 1 1M 1
1M 2 1M 2

16 BIT ARITHMETIC GROUP RP = B, 0, H, SP

DAD RP

CAD RP

SBC RP

DAD IX,RP

DAD IY,RP

INX RP
INX IX
INX IY

DCX RP
DCX IX
DCX IY

ADD HL,RP

ADC HL,RP

SBC HL,RP

ADD IX,RP

ADD IY,RP

INC RP
INC IX
INC IY

DEC RP
DEC IX
DEC IY

16 bit add (RPrH or IY)

16 bit add with carry (RPrH or IX)

16 bit subtract with carry

16 bit add register pair to IX

16 bit add register pair to IY

16 bit increment

16 bit decrement

2-13

MNEMONIC ZILOG REMARKS -
ROTATE AND SHIFT GROUP R '" S, C, D, E, H, L, M, IX+d, IY+d

RLC

RAL

RRC

RAR

SLC R

SLC M

SLC IX,d
SLC IY,d

RL R

SRC R

RR R

SLA R

SRA R

SRL R

RLD

RRD

RLCA

RLA

RRCA

RRA

RLC R

RLC (HL)

RLC (IX+d)
RLC (IY+d)

RL R

RRC R

RR R

SLA R

SRA R

SRL R

RLD

RRD

Accumulator left circular

Left circular through carry

Accumulator right circular

Right circular through carry

Register left circular

Memory left circular

Left circular memory indirect

Register left through carry

Register right circular

Register right through carry

Left linear bit 0 '" 0

Right linear bit 7 '" extended

Right linear bit 7 '" 0

Left decimal

Right decimal

2-14

--

MNEMONIC ZILOG REMARKS
~

BIT MANIPULATION b = bit number 0,;b<7

BIT b,R BIT b, R Zero flag = bit b of register R

BIT b,M BIT b,(HL)
BIT b,IX,d BIT b,(IX+d)
BITb,IY,d BIT b,(IY+d)

STB b,R SET b, R Set (l) bit b of register or
STB b,M SET b,(HL) memory
STB b,IX,d SET b,(IX+d)
STB b,IY,d SET b,(IY+d)

RES b,R RES b,R Reset (0) bit b of register or
RES b,M RES b,(HL) memory
RES b,IX,d RES b,(IX+d)
RESb,IY,d RES b, (IV+d)

INPUT/OUTPUT GROUP

INP

CIN R

INI

INIR

IND

INDR

OUT P

(OUT R

OUTI

OUTIR

OUTD

OUTDR

P = port number

IN A,(P)

IN R,(C)

INI

INIR

IND

INDR

OUT (P) ,A

OUT (C), R

OUTI

OUTIR

OUTD

OUTDR

R = register

Input to accumulator

Register R from port (C)

Input and increment

Repeated input and increment

Input and decrement

Repeated input and decrement

Output accumulator

Register R to port (C)

Output and increment

Repeated output and increment

Output and decrement

Repeated output and decrement

2-15

MNEMONIC ZILOG REMARKS

JUMP GROUP V = location (16 bit) dest = destination (+128 bytes displacement)

JMP V JP V Jump

JNC V JP NC,V No carry

JC V JP C,V Carry

JNZ V JP NZ,V Not zero

JZ V JP Z,V Zero

JPO V JP PO,V Parity odd

JPE V JP PE. V Parity even

JP V JP P,V Positive

JM V JP M,V Negative

JR dest JR d Jump re1ati ve

JRC dest JR C,d Carry

JRNC dest JR NC,d No carry

JRZ dest JR Z,d Zero

JRNZ dest JR NZ,d Not zero

PCHL JP (HL) Branch to location in HL

PCIX JP (IX) Branch to IX

PCIY JP (IY) Branch to IY

DJNZ dest DJNZ,d Decrement and jump relative if
not zero

2-16

-

MNEMONIC ZILOG REMARKS

CALL AND RETURN GROUP V = address

CALL V CALL V Subroutine transfer

CNC V CALL NC,V No carry

CC V CALL C,V Carry

CNZ V CALL NZ,V Not zero

CZ V CALL Z,V Zero

CPE V CALL PE,V Parity even

CPO V CALL PO,V Parity odd

CP V CALL P,V Positive

CM V CALL M,V Negative

RET RET Return

RNC RET NC No carry
.

RC RET C Carry

RNZ RET NZ Not zero

RZ RET Z Zero

RPE RET PE Parity even

RPO RET PO Parity odd

RP RET P Positi ve

RM RET M Negative

RET! RET! Return from interrupt

RETN RETN Return from non-maskable interrupt

RST n RST n Restart

2-17

ASSEMBLER

PSEUDO OPERATIONS

PSEUDO OPERATIONS expr = arithmetic expression -
ORG expr

DS expr

DW expr

DB expr

EQU

SET

IF expr

ENDIF

END

USE operand

Define program counter to nnnn

Reserve n bytes of storage

16 bit datum definition

8 bit datum or ASCII character string definition.
The operand may be an ASCII character string
enclosed in single quotation marks. ASMB allows only
a single entry per line. Examples:

DB 5
DB 'ASCII STRING'

The operand defined by the label field is set
equal to the expression defined by the operand
field. This operation is performed in pass one
of the assembler and the variable definition is
fixed by the first such definition encountered.

The operand defined by the label is set equal to
the expression defined by the operand field. This
operation is performed in both pass 1 and pass 2
and the replacement is effected upon every encounter.

expr is evaluated. If the result is zero the scanner
skips to the next ENDIF, END, or end of file before
resuming assembly. If the expression evaluates to
any non-zero value, assembly proceeds. Operation is
performed in both passes.

Identifies the end of a conditional assembly block.

Terminates assembly.

Allows program assembly to proceed with multiple
location counters. The operation is skipped if
the operand has not previously been defined;
however, the definition can appear after the
reference, to be used by pass 2. The USE operation
is best explained by example.

-

-

AORG SET 0Ml00H
BORG SET 0B000H

USE AORG; SET code origin to AORG

!code at 0A000H l -USE BORG; SET value of AORG to PC
SET PC to BORG

! code at 0B0fl0H

2-18

USE AORG;

!code I
Resume code at end of previous
block which started at A~00.

USE BORG; Resume code at END of block
which started at B~00.

Remember where we are.

in line coding.

$;
AFTR
'CHARACTERS'
RESUM; Resume

The USE instruction can be used to insert program data
at the end of instruction code.
AFTR SET LAST; Not known on pass 1.

ORG START; Somewhere.

f code I
RESUM SET

USE
STRING: DB

USE

!code I
USE AFTR

f more data I
USE RESUM; Continue.

LAST SET $
END

2-19

ASSEMBLER ERRORS/DIAGNOSTICS

Assembler error and diagnostic messages consist of single character identifiers
which flag some irregularity discovered either during pass 1 or pass 2 of the
assembly. The single character precedes the line number of the formatted
assembly listing.

P Phase error: the value of the label has changed between the two
assembly passes.

L Label error: label contains illegal or too many characters, e.g., LB#I:

U Undefined program variable.
V Value error: the evaluated operand is not consistent with the operation

e.g., MVI A, 1000H (not a valid 8 bit operand).
S Syntax error e.g., MOV A+B

o Opcode error, e.g. DCS B
M Missing label field.
A Argument error.
R Register error.
o Duplicate label error.

EXISTING SOURCE FILES

ASMB is compatible with programs generated under SP#1 or its many descendents,
SCS 1,2, ESP-I, ALS-8, etc. These related source programs can be included
in the ASMB disk system by the following procedure:

1. Load ASMB and create a memory file at a convenient memory location.

2. Exit from ASMB and load the existing source file into memory
starting at the memory location defined in step 1.

3. Re-enter ASMB and examine the file with the P command.

4. Delete and re-enter the last line of the source code.

5. Save the memory file on disk via the Wcommand.

6. EDIT will re-format the source file for MAKRO via the N command.

While all such files are compatible with ASMB, EDIT may be unable to effect
the reformat. A failure may arise if EDIT does not encounter the ASMB
end-of-file 01 (catastrophic).

2-20

SAMPLE ASMB OPERATrON

INi"<
['AD
OF.:A
Em)

Assembly listing

Disk operation completed

Write source to disk

Auto line mode
< typed after carriage return
Print formatted listing

Create memory file

> typed after line number, but not echoed

Source fil e

Assemble file
LA8EL ,1 t·j:,·: H

OAD 8
OF.:A A
END

(10:1(1
,,,,0:11
0(1:12
'3(1:1::

(1

:1 2AO'",
1 2AOO
(1

(1

1 2AOO

H
8
A

S'T'STEr'l

i5

55

:11

1
25

:10

11

-1:3:7
140
-155

4
14
46

16:=:
17(1

)CiO ASt'IE:
ASt'18 [)E'·...ELOPt·IEIH
F /TEST/6000
TEST 6000 6000
00:HiLA8EL: Hji< H

[)AD 8
OF.:A A
END

P
001(1 LAE:EL
0011
0012
001::
A FOOO
FOOO 2::
FOOl t19
F002 87
FO(1}
S'T't'lBOL TABLE
LABEL FOOD
I·J
FILE
::;,A'·... E l·JF.: I TTEN
E:>LI
OOS
t·lAI::F.:O
E01T
END
SA'·/E
ASt'IB
['EE:UCi
fC::l·J I f,:ABS
I::lH f<
L I Nf:E['

2-21

